
Before embarking on this proj-
ect, Kathleen Cao wasn’t cer-
tain about what to pursue in
graduate school. Now that’s
clearer, after immersing herself
in chemistry research with
Professor Shaka. Kathleen
advises others who have an
interest in research not to hes-
itate in getting started, explain-
ing that professors and other
students provide all the neces-
sary guidance and training on
projects. In May 2002, she pre-
sented her findings at the 
UCI Undergraduate Research
Symposium. She plans to
attend graduate school in phys-
ical chemistry and hopes to
continue research in NMR
spectroscopy, a topic that now
fascinates her. When Kathleen
is not in the lab, she enjoys
reading and tutoring high
school students. There has never been any acceptable alternative to Fourier trans-

form for frequency analysis of the time-dependent signal obtained
in nuclear magnetic resonance. Kathleen Cao’s work on alternative
linear algebraic methods of making the connection between the
time and frequency domains shows why this is so. Two very close-
ly related approaches, both of which may seem to be equivalent on
paper, give markedly different results. The decimated signal diago-

nalization method (DSD) is obtained by first “decimating” or reducing the signal size
and then extracting frequencies. The filter diagonalization method (FDM) is
obtained by constructing a filtered local frequency-domain signal matrix, and then
diagonalizing. Rather surprisingly, the latter is far more effective, and now, based on
Kathleen’s careful investigation, we know exactly why. Making a discovery can be
one of the most exciting events in one’s life, therefore, it is very important for under-
graduates to conduct research and get a taste of the unknown.
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Two parametric fitting methods for spectrum analysis, the filter diagonalization
method (FDM) and decimated signal diagonalization (DSD) method, are com-

pared for processing one-dimensional nuclear magnetic resonance (NMR) spec-
troscopy time signals. These methods are alternatives to the discrete Fourier trans-
form (DFT) for processing time domain data for NMR. FDM and DSD use pure
linear algebra to diagonalize small matrices generated from an NMR time signal in
order to extract the inherent spectral parameters, the characteristic frequencies and
amplitudes. These techniques have advantages over DFT because they can use 
smaller data sets and the resolution is not restricted by the Fourier transform time-
frequency uncertainty principle. The main difference between FDM and DSD is the
method of generating small matrices from a single long signal; FDM filters basis
functions whereas DSD filters the time signal. This comparative study shows that
the development of DSD is not yet at the level of FDM, particularly for one-dimen-
sional NMR data processing.
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Introduct ion

Nuclear magnetic resonance (NMR) spectroscopy is a tech-
nique that provides information to determine molecular
structure. Currently, spectroscopy analysis is done by utiliz-
ing the discrete Fourier transform (DFT). However, alter-
native methods, such as the filter diagonalization method
(FDM) and decimated signal diagonalization method
(DSD), have been developed that offer a tremendous time
benefit because experiments can be run in significantly less
time compared to experiments run using DFT. FDM and
DSD are linear algebra methods that diagonalize data matri-
ces to extract eigenvalues and eigenvectors. Exploration of
these alternative methods is important because data can be
analyzed in a more time-efficient manner and with higher
resolution. Thus, structural elucidation of complex macro-
molecules becomes more rapid.

Large endeavors such as the Human Genome Project will
lead to the discovery of thousands of proteins, and their
structures will need to be determined before they can be

studied further. Fields related to healthcare and drug devel-
opment will also benefit from these methods. The funda-
mental step of identifying target molecules will be made
simpler and faster, thereby advancing the progress of syn-
thesizing drugs that are selective and specific. In fields
where time is of the essence, DSD and FDM have the
potential to offer these solutions readily.

Spectral analysis determines the characteristic frequencies,
amplitudes and phases of the constituents of a time-varying
signal (Hoch and Stern, 1996). This study compares two
unconventional methods for spectral estimation, FDM
(Wall and Neuhauser, 1995) and DSD (Belkic et al., 1999).
In NMR spectroscopy, a time signal is transformed into a
frequency spectrum as illustrated in Figure 1. The real com-
ponent of the frequency signal is called the absorptive
Lorentzian line while the imaginary component is called the
dispersive Lorentzian line (Figure 2).

Although DFT is the traditional method for NMR data
processing, parametric fitting methods such as FDM and
DSD require less data. Therefore, throughput can be
increased, which is advantageous because the signal length
required by DFT can be inconvenient or impossible to
obtain, particularly for complex multidimensional spectra,
such as those of large biological molecules. Limitations of
DFT include its slow convergence and low resolution. In
addition, DFT alternatives, FDM in particular, can be used
for multi-dimensional data sets, unlike DFT, which is intrin-
sically one-dimensional (Mandelshtam, 2001). Parametric
alternatives to DFT result in shorter experimental data
acquisition time and better resolution.

In this investigation, simple model signals and a real, exper-
imentally obtained signal for the protein myoglobin were
processed using FDM, DSD and DFT. Because FDM and
DSD use windows to process data rather than computing
the entire spectrum simultaneously, the effects of window
size and window placement were investigated.
Observations were made about the consistency of the
results for different window sizes chosen for the same
region in the spectrum. The reliability of the alternative
parametric methods rests on their abilities to produce a
spectrum that is at least comparable to the correct DFT.

Theoret ical   Background

The Discrete Fourier Transform
Experimental data is neither infinite nor continuous. Rather,
it is a collection of sampled points measured at every time
step, τ. The time domain data, ck, with N data points, is

2 T h e U C I  U n d e r g r a d u a t e  R e s e a r c h  J o u r n a l  

AA CC O M P A R A T I V E SS T U D Y O F T H E FF D M  A N D DD S D  MM E T H O D F O R OO N E - DD I M E N S I O N A L NN M R  DD A T A PP R O C E S S I N G

 

fo

• 

f→

FT

   FT

••

t→

t→

fo

linewidth

amplitude

→f

Figure 1  
Time signals and their Fourier transformations.  (A) A single sinu-
soid of infinite length transforms to a delta function with an exact
frequency and infinite height.  (B) A damped sinusoid transforms
to a Lorentzian peak with a frequency, linewidth and amplitude.

Figure 2  
The components of a Lorentzian line: (A) The real, absorptive and
(B) the imaginary, dispersive. 
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transformed to the frequency domain using DFT in
Equation 1:

The time signal and frequency response are both periodic.
The period of the signal is the spectral width, or Nyquist
range, which is defined as 2π/τ radians/sec or 1/τ Hz.
Because a finite number of data points are acquired, this is
a truncated, infinite time signal. Data is acquired for some
time period called the sampling time. Due to the trunca-
tion, the data does not decay to zero; therefore zeroes are
added to the end of the signal. The DFT of this signal is a
sinc function where the width of the center peak is inverse-
ly proportional to the sampling time. The DFT of such a
signal is shown in Figure 3.

The resolution in the frequency domain is determined by
the Fourier transform time-frequency uncertainty principle
in Equation 2:

Hence, frequency separation (δF) is inversely proportional
to the number of data points, so as the number of data
points increases, the resolution improves. Another way to
view this is that resolution increases as acquisition time
increases. The best frequency spectrum obtained using
DFT comes from time signals that have been sampled at
small time intervals (large N, small τ) and over a long time
period (until the signal decays to zero), which yields sharp,
resolved lines in the spectrum.

Filter Diagonalization Method
The 1-D filter diagonalization method is well developed,
reliable, fast, and capable of resolving frequencies beyond
the FT uncertainty principle. FDM was originally devel-
oped by Neuhauser (1990) for time-dependent quantum

dynamics calculations, and was improved and applied to
time signal data processing by Mandelshtam and Taylor
(1997). FDM is a numerical procedure designed to extract
the parameters (peak positions, linewidths, amplitudes, and
phases) of time domain data by fitting the data to a sum of
damped sinusoids. The time signal is assumed to be in the
form of (3)

where dk are complex amplitudes and wk are complex fre-
quencies. The nonlinear summation (3) is converted to a
linear algebra problem of the form of (4)

where U(1) and U(0) are matrices, Bk is an eigenvector (com-
plex amplitude), and uk is the eigenvalue (complex frequen-
cy). U(1), the matrix representation of the evolution opera-
tor (5), is broken into smaller matrices that are easily diago-
nalized:

where Ω is the Hamiltonian operator. In an appropriate
basis set such as the Fourier basis, U(1) is constructed from
the time signal cn. This reduction of the original large data
matrix is a consequence of the windowing techniques used
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Figure 3
A finite number of data points are acquired, yielding a truncated
signal that does not decay to zero and must be zero-filled at the
ends.  Transforming this signal by DFT results in a sinc function.
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by FDM to filter out basis functions, thus increasing the
numerical efficiency of a spectral calculation.

Decimated Signal Diagonalization
Like FDM, DSD uses windows to reduce a large data matrix
to a number of simple ones before diagonalization.
However, while FDM filters basis functions to create its
windows, DSD filters the time signal. A time signal is pro-
cessed to get a low-resolution spectrum by DFT. This spec-
trum is divided into M windows containing at most 200 data
points. A new signal is created for each window by zeroing
the content outside the window and then recentering the
window at zero. The inverse DFT is performed to convert
the frequency data back into the time domain. The deci-
mation step occurs when this new time signal is sampled at
M times greater than the original time step, creating a band-
limited decimated signal, which is diagonalized to extract
the spectral parameters.

Exper imental  Methods

The model signals in the published DSD results contained
sharp, resolved peaks. In this investigation, experiments
were carried out using model signals with resolved peaks
but with a definite linewidth and an experimental myoglobin
signal. First, a program for DSD was coded using the pub-
lished algorithm (Belkic et al., 1999).

Various windows, differing in length and position, were
used for the first model signal. Varying the window size
demonstrates how the signal length affects FDM and DSD
in their spectral estimation. By using different window
positions, the stability of these methods was analyzed. The
model signal was 1,024 points long. Experiments were con-
ducted using window lengths of 32, 64, 128, and 256 grid
points, starting at grid points 210, 215, 220, and 225.

The second model signal contained a very broad peak locat-
ed near a triplet, with the broad peak targeted for study.
FDM and DSD were tested to determine whether the spec-
tral parameters of the broad peak could be accurately
extracted and the resulting spectra were compared.
Window lengths of 32, 64 and 128 grid points were used.
These windows varied in position, encompassing more of
the broad peak with increasing window length.

The signal for myoglobin was 32,768 points long. Because
the endpoints of the myoglobin spectrum are mainly noise,
only the dense region was processed with FDM and DSD.
The spectrum was initially constructed using 62 windows
that were 256 points long. The spectrum was then recon-

structed using 63 additional windows that contained 50%
overlap of the original 62 windows. In order to smooth out
the edge effects contained in each window, a weighting
function (cos2(ax), where ‘a’ is an appropriate constant) was
applied to each window and all of the windows were added
together.

Results  and Discussion

The first study of FDM and DSD used a model signal of
the form (6) 

with 1,024 points and 2 sinusoids (K = 2). The DFT spec-
trum for this model signal is shown in Figure 5.

The frequency spectrum consists of two peaks at frequen-
cy values -1.7 and -2.0 Hz with a relative intensity of 1:10.
The smaller peak at -1.7 Hz is the peak of interest. The
spectral parameters (frequencies, widths and amplitudes)
extracted using FDM were accurate. The poles (peaks rep-
resented by a complex frequency and amplitude pair) calcu-
lated by DSD were acceptable, however, the poles not cor-
responding to true peaks misrepresented the actual spec-
trum by bunching up at the edges. Hence, the DSD-recon-
structed spectra themselves were not of the quality of the
FDM or DFT spectra. All of the DSD spectra exhibited
severe edge effects that caused distortions in the baseline.
The poorest DSD spectrum was observed in the 32-point
window positioned at grid point 210. The tail of the peak
is affected by the nearby edge effect because it does not
return to the baseline. FDM was able to calculate the win-
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Figure 5
The frequency spectrum of the first model signal obtained using
DFT.  The peak of interest is the small peak on the shoulder of the
larger peak. 
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dows exactly, including the correct contribution of the large
neighboring peak located outside the window. This was
possible because FDM filters basis functions, and they are
not defined. In these windows, FDM calculates a basis set
and fits the basis functions to peaks. However, if a basis
function best represents a peak outside the window, then
that basis function “leaves” the window to fit the outside
peak.

This model signal was processed using 32-,
64-, 128-, and 256-point windows in four dif-
ferent, nearby positions. The objective behind
conducting experiments with varying window
lengths was to observe whether the window
size (i.e., the number of data points used)
would effect the results. The second part of
the experiment, varying the window position,
was carried out to test whether the results were
consistent between windows. Figure 6 illus-
trates the DSD and FDM results for this
model signal using 32, 64, 128, and 256 points
for a given window position. Figure 7 illus-
trates the DSD and FDM results using the 32-
point window at different positions.

The second model signal, also of form (6), con-
tained 256 points and 4 sinusoids (K = 4). The
peak of interest in this spectrum was a large,
broad peak with a frequency of -0.5 Hz to the
right of a triplet at about -2 Hz (Figure 8). In
this experiment, the extracted parameters were
not successfully determined as compared to
the first model signal (Table 1).

Broad peaks are generally difficult to process.
The FDM and DSD spectra for the windows

used in this experiment were not perfect, but the DSD
results were clearly not comparable to the FDM results.
One experiment used a window that was 32 points long and
contained only the top of the peak starting at grid point 91.
The second experiment used a 64-point window beginning
at grid point 75. The third experiment used half the num-
ber of total points, 128, with the window beginning at grid
point 65. The window began as far to the left as possible to
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Figure 6
(A) DSD and (B) FDM results are compared using windows of different lengths.  The
DFT for the window is shown at the top; below the DFT spectrum is the experiment
using the 32-point window, followed by the 64-, 128- and 256-point windows.
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Figure 7 
(A) DSD and (B) FDM results for the 32-point window at different positions.  For com-
parison, the DFT spectrum is shown at the top of each figure.
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Figure 8  
DFT spectrum of the second model signal

FDM DSD FDM DSD FDM DSD Actual
Value

Frequency
Range (Hz)

-0.9081 
to

-0.1227

-1.3008 
to

0.2630

-1.5462 
to

1.5953

-----

Frequency
(Hz)

-0.5002 -0.4660 -0.5000 -0.4939 -0.5000 -0.4999 -0.5

Width -1.4968 -0.7976 -1.5000 -1.3076 -1.5000 -1.5007 -1.5

Amplitude 19988 3641 20000 15374 20000 40230 20000

32-point window              64-point window               128-point window

Table 1
Eigenvalues extracted for the broad peak in the second model 
signal by FDM and DSD.
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encompass most of the broad peak while excluding the
triplet. The DSD spectra show edge effects and baseline
distortions similar to the results from the first model signal,
while FDM was able to calculate a good fit for the peak
(Figure 9).

The third experiment used a real-time signal, composed of
32,768 data points, of the protein myoglobin in solution.
The windows used were 256 points long and spanned a fre-
quency range of 93.75 Hz. For DSD, 137 windows were
analyzed. Each window contained 50% of the previous
window. For example, the first window ranged from
-3700.19531 to -3606.44531 Hz. The second window start-
ed at the center of the first window, -3653.32031 Hz and
ended at -3559.57031 Hz. A smoothing function,
cos2(x/93.75π), was applied to the windows before sum-
ming them. This function was used because it has a value
of 1 in the center of the window and 0 at the edges, and it
eliminated the edge effects produced by DSD. The period
of the smoothing function was equivalent to the window
frequency range of 93.75 Hz. Due to the 50% overlap,
what is 0 in one window is 1 in the neighboring window.
After summation of all the windows, the result is a reason-
able-looking spectrum, however, the spectrum is still not
better than the FDM spectrum. At best, DSD is compara-
ble to FDM. Figure 10 shows the myoglobin spectra
obtained using DFT and FDM. Though the 1-D spectrum
for myoglobin is dense, FDM successfully reproduces the
DFT result. The DSD results are shown in Figure 11,
before and after the application of the cos2(x/93.75π)
weighting function to the windows.

In comparing the DSD spectrum with the FDM or DFT
spectra, a glaring problem with the DSD spectrum is evi-
dent. At about -800 Hz, near the large water peak, there is
a spike in the DSD spectrum that is not present in the DFT
or FDM plots.

It has been demonstrated that DSD is capable of extracting
the correct eigenvalues for NMR data signals when the
peaks are sharp, however, the frequency spectra produced
by DSD are incorrect (Belkic et al., 1999). Baseline distor-
tions and edge effects are the main problems encountered
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Figure 9
(A) DSD and (B) FDM spectra for the second model signal.  The DFT spec-
trum is at the top of each figure.  Below the DFT are the 32-, 64- and 128-
point windows.
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Figure 10 
1-D myoglobin spectra obtained using (A) DFT and (B) FDM.
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Figure 11
DSD myoglobin spectra obtained (A) before and (B) after the
use of overlapping windows and a weighting function.
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in DSD spectra. For dense spectra, the distortions and arti-
facts can be masked using windows with 50% overlap; this
greatly improved the myoglobin signal.

A possible explanation for the obvious problems in the
DSD frequency spectrum is that when DSD decimates the
time signal, the periodicity of the signal is lost. The time-
domain data is a sinusoid that decays to zero. When DSD
employs the inverse DFT, the original length of the time
signal is still intact. In this step, a serious problem arises; the
time signal for this zeroed spectrum is wrong, which results
in the ends blowing up instead of decaying to zero. Next,
DSD calls for decimation of the signal. When the sampling
time is increased by a factor of M, fewer data points are
acquired, creating a time signal shorter than the original.
This new signal still possesses the divergent ends and is
introduced into FDM as the input data signal. Figure 12

illustrates the steps involved in DSD using the
first model signal.

Conclusion

The model signals used in this investigation
tested the extreme conditions that must be sat-
isfied by any NMR data-processing method. A
combination of sharp and broad lines was cho-
sen because they behave differently in time.
Sharp lines decay slowly in time while broad
peaks decay quickly in time. FDM is able to
handle these extreme cases, whereas DSD
appears to work only when processing well-
resolved, sharp lines. It was also shown that
using a cos2(ax) smoothing function and over-
lapping windows results in spectra that are sub-
stantially better than the DSD spectra obtained
using the published method. However, the
quality of the DSD dense parameters and spec-
tra are inferior to those obtained using FDM
alone.
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Figure 12
A DSD example. (A) A time signal is processed by DFT to give (B) the frequency
spectrum.  (C) A window is selected to be analyzed and the spectrum outside the
window is set to zero.  (D) The new spectrum is converted back to the time domain
by inverse DFT.  (E) The signal is decimated to produce a new, shorter time signal,
which is then diagonalized, giving (F) the resulting frequency spectrum.
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