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In this paper we explore the use of  the Leray α-regularization applied to the inviscid 
Burgers equation. In this regularization, an additional variable is introduced, which 

is a smoothed version of  the original variable, and a vector system for the original and 
smoothed variable is solved simultaneously. We employ a hybrid algorithm combin-
ing a centered finite difference scheme for Burgers equation and a spectral method 
for the regularization. A parameter θ is introduced in order to conserve particular 
quantities associated with the solution of  the regularized problem. For several values 
of  θ, we compare the exact solutions to those of  the regularized problem and inves-
tigate the dependence of  the solutions on the regularization parameter α and on the 
mesh size. In particular, it is shown that under appropriate conditions and particular 
values of  θ, the numerical Leray α-regularization scheme produces an approximate 
solution that appears to converge to the unique discontinuous (entropy) solution of  
Burgers equation as the mesh size h → 0, provided that the regularization parameter 
α and h are related to each other in a precise way. Interestingly, our results suggest 
that it is only the smoothed variable that converges to the entropy solution.

This research introduces a novel approach—inspired 
by recent developments in sub-grid scale models of  
turbulence—for computing hyperbolic conservation 
laws that arise in many problems including aircraft 
design, tsunami waves, and traffic bottlenecks. These 
equations are known to develop singularities in finite 
time, and capturing the physical solution beyond the 

singularity time has been a major challenge for the past half-century. Here, this novel 
approach is tested thoroughly using Burgers equation as a prototype, and the success 
and limitations of  the approach are determined. Being involved in such state-of-the-
art research provides undergraduates with a unique opportunity to bridge classroom 
mathematics experience and knowledge with real world applications.
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Introduct ion

Many problems in engineering and science involve con-
served quantities, and mathematical modeling of  such prob-
lems leads to systems of  conservation laws. Mass, momen-
tum and energy conservation laws derived for various types 
of  fluid flows together with equations of  state form a 
sufficient set of  governing equations. For example, shock 
waves in supersonic nozzle exhaust, tsunami waves, traffic 
bottlenecks, and numerous other phenomena can be mod-
eled very successfully with conservation laws. Amazingly, 
the same forms of  conservation laws are applicable to 
seemingly different physical processes; therefore an advance 
in the understanding of  solutions of  one equation contrib-
utes to several applied fields of  study simultaneously.

This paper explores new numerical techniques for solving 
such conservation laws by focusing on a specific model 
problem: Burgers equation. Burgers equation is one of  the 
simplest and most well studied nonlinear hyperbolic partial 
differential equations, as it serves as a model for more gen-
eral conservation laws (Knobel, 2000). In fluid mechanics 
the Burgers equation is the special case of  Newton’s second 
law (momentum conservation), applied to a differential 
volume of  inviscid compressible fluid with no pressure 
gradients and no external body forces. Such approximation 
is valid in most applications in aerodynamics because the 
inviscid theory is applicable outside any boundary layers 
(thin viscous flow regions surrounding the immersed body). 
Thus Burgers equation can be used to model compress-
ible fluid flow far from a moving body. This particularly 
applies to shock wave formation in supersonic compressible 
flow—a phenomenon at the heart of  the design consider-
ation of  any space launch vehicle.

The prime difficulty in computing conservation laws arises 
from nonlinearity of  the governing equations. Not only may 
discontinuities develop in an initially smooth profile, in many 
cases more than one solution exists for the given problem. 
The concept of  a weak solution has been introduced to deal 
with solution discontinuities that develop in finite time, since 
the solution in the classical sense (continuously differentiable) 
no longer exists in that case. A weak solution is obtained by 
considering a given conservation law in its integral form as 
opposed to the classical differential form, which with some 
manipulation allows the computation of  solutions that are 
discontinuous and does not require differentiability to satisfy 
the posed problem. However, different equivalent forms of  
the same differential equation may produce different weak 
solutions, introducing non-uniqueness and of  course greater 
difficulty in dealing with such problems.

Existence and uniqueness results are crucial preliminaries to 
any solution scheme of  a particular problem. If  the addi-
tional conditions required for uniqueness are not imposed 
in the solution procedure, there is no guarantee that the 
obtained result represents the desired physically meaningful 
solution. A great deal of  theoretical work has been done to 
obtain necessary and sufficient conditions for the existence 
and uniqueness of  solutions to conservation laws but in 
many cases, as for example the 3-D momentum conserva-
tion equation (viscous Navier-Stokes equations or inviscid 
Euler equations), we still do not have a uniqueness result 
that is valid for a general class of  initial data.

Regularization schemes modify the existing equations and 
force the solutions of  the regularized problem to be smooth 
rather than discontinuous. In the limit as the regularization 
parameter tends to zero, the regularized equation formally 
tends to the original equation. Further, it is often easier to 
simulate numerically the solution of  the regularized equa-
tion than the original equation.

In this paper we study the convergence properties of  a par-
ticular regularization scheme applied to Burgers equation. 
The solution is demonstrated numerically to converge to a 
unique physically meaningful result given a particular setup 
of  the regularization problem. The new method is easy to 
implement numerically and gives a good degree of  accuracy 
in relation to the exact solution, making it a promising can-
didate for use in computation in engineering applications.

Background

Burgers equation is a special case of  a general conservation 
law:

(1)= 0(x,t) + f(u(x,t))xtu

where u(x,t) is the amount of  a conserved quantity such as 
density, momentum or internal energy, f(u) describes the 
flux of  the conserved quantity, in the case of  Burgers equa-
tion, 2

2
1=)( uuf , and the subscripts denote partial deriva-

tives. The inviscid form of  Burgers equation that is to be 
considered here is given by:

(2),(x,t) = 0(x,t) + u(x,t)u t > 0xu xt ∈

together with L-periodic (L = 1) initial conditions:

(3)(x + L)(x) = ∈xu(x,0) =
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Assuming that no discontinuities develop in time, the solu-
tion u(x,t) can be obtained by the method of  characteristics 
in the same way as for the linear advection (wave) equation

0=xt cuu + , except here the characteristic speed is no longer 
constant (Knobel 135). The solution u(x,t) is constant along 
the characteristic curves which, for Burgers equation, are 
given by:

(4)) t + x(x 0x(t) = 0

The solution u(x,t) is then given by:

(5)(x,t))(x0u(x,t) =

where ox  is a zero of  the function:

(6)) t - x(x) = x -0 = G(x 000

(Strauss 361). If  0≥
odx

)( oxd , this equation is uniquely solvable 
for all t. In this case, the solution is an expansion fan or is a 
constant in the case of  equality. The characteristics do not 
intersect, so unless initial conditions are discontinuous, the 
solution u(x,t) will remain smooth for all times. However, if  

0<
odx

)( oxd  for some ox  in the initial periodic profile then equa-
tion (6) may not be uniquely solvable for ox  , for all t. As a 
consequence some of  the characteristics intersect, resulting 
in discontinuities (shocks) and non-differentiability of  the 
solution. However, it is still possible to obtain the solution 
in the weak (or integral) sense (LeVeque 27). Such solutions 
typically are piecewise smooth. In the case of  a single jump 
discontinuity, let )),(( ttxs  be a curve in the x–t plane across 
which u(x,t) is discontinuous. Then the time variation of  the 
curve is given by the Rankine-Hugoniot condition (Knobel 
134):

(7))(u
2
1=))=(t) −+

−+

−+

+
−
−

≡ u
uu
f(uf(u

dt
dxs

sx

The discontinuity in the solution is called a shock wave, 
)(tsx  is the speed of  propagation, ),(lim= txuu

sxx +→
+  and 

),(lim= txuu
sxx −→

−  are right and left limits that will in general 
not be equal across the shock wave, creating an infinite spa-
tial gradient of  u(x,t). If  the shock is not present initially, the 
time of  formation is calculated as the smallest time when 

),( txux  becomes infinite, which is given by:

(8)
⎭
⎬
⎫

⎩
⎨
⎧

∂∂
−

))/((
1= inf

00
b xx

t > 0,t t = , for all x ∈0

Lastly, to ensure uniqueness of  the weak solution, the 
entropy condition is used as the physical selection mecha-

nism. That is, the speed of  the wave just behind the shock 
must be higher than the speed just ahead of  it (Strauss 
366). The entropy condition guarantees (in analogy with gas 
dynamics) that the entropy of  material increases as it passes 
through the discontinuity. This can be written as:

(9)(t) >> +− uu sx

for Burgers equation. Hence, the solution that satisfies the 
entropy condition is a unique physical solution. A more 
convenient method to test if  the entropy condition is satis-
fied is the Oleinik inequality (Knobel 183):

(10)< t
C

a
u(x + a,t) - u(x,t)

which holds for all a,t > 0 and some constant C that depends 
only on the initial conditions )(=,0)( xxu . This condition 
restricts how large the positive secant slopes of  u(x) can 
become in time, while the negative slopes remain unre-
stricted (Knobel 183).

α -Regular izat ion Problem Statement 
and Conser ved Quant i t ies

Although many methods of  approximation of  solutions 
to conservation laws exist (Iserles, 1996; LeVeque, 1992), 
the purpose of  this research is to test numerically several 
versions of  what we call the α -regularizations of  Burgers 
equation. Those regularizing schemes have been inspired 
by some of  the recent sub-grid scale models of  turbulence, 
such as the Navier-Stokes-α  (and Euler-α ) (Chen et al., 
1999; Holm et al., 1998), the Leray-α  (Cheskidov et al., 
2005; Leray, 1934), and the modified Leray-α  (Ilyin et al., 
2006) models. The α -regularization has also been investi-
gated in the context of  the isentropic Euler equations (Bhat 
et al., 2007) For 0 ≤ θ ≤ 1 we consider:

(11)0=)(1 vuvuv xxt −++

where v  is related to u  by:

(12)][= 2
xxuuuHv −≡

with periodic boundary conditions ),(=),( tLxutxu + , 
),(=),( tLxvtxv + , and initial data:

(13))(=)(=)(=,0)( Lxxxvxv 0 +

The parameter θ can be chosen such that certain quantities 
are exactly conserved by (11). The conserved quantities for 

3
2,3

11,=  are stated below in theorems 1, 2 and 3.
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The Leray-α  Model (θ = 1)
For the case θ = 1, one obtains the Leray-α regulariza-
tion which was originally introduced by Jean Leray for the 
Navier Stokes equations governing incompressible fluid 
flow (Leray, 1934). This regularization scheme was pro-
posed and studied by H. Bhat and R. Fetecau (Bhat and 
Fetecau, 2006) and E.Tadmor et al. (Tadmor et al., 2006). 
However in the numerical work of  Bhat and Fetecau, the 
investigation did not conclusively demonstrate the conver-
gence properties of  the proposed scheme. In this paper, the 
convergence of  functions ),( txu  and ),( txv  to the exact 
entropy solution u(x,t) of  the inviscid Burgers equation (2) 
is studied numerically as α → 0. If  α = 0 we formally have 

uv =  and the regularization problem becomes (2). For 
α ≠ 0, both functions ),( txu  and ),( txv  are smooth and do 
not have discontinuities, however in the limit as α → 0 there 
is recent evidence that solutions for θ = 1 converge to pos-
sibly discontinuous entropy solutions of  Burgers equation 
(Bhat and Fetecau, 2006; Tadmor et al., 2006).

If  θ = 1 the system (11)–(12) becomes:

(14)0=),(),(),( txvtxutxv xt +

),(),(=),( 2 txutxutxv xx−

Define the pL  and ∞L  norms of  a function pL∈  or ∞∈L  
respectively:

(15)[ ]0,0
and,dx LxL

pL

pL
)(x)(x)(x)(x ∈

∞
sup≡≡ ∫

Then for smooth enough initial data, it can be shown that 
the maximum and minimum of  ),( txv  in (14) are con-
served. In fact, one can show that:

(16))(=),(
LL

tv ⋅⋅
∞∞

Theorem 1 θ = 1. Let )(x  be smooth enough, and let ),( txu , 
),( txv  be the corresponding L-periodic solutions of  (14), then:

(17))(=),(
00

dxxdxtxv
LL

∫∫

That is, the total mass is conserved.

Proof. Integrate (14) by parts and apply the periodic bound-
ary conditions to obtain:

0=),(),(),(
0

dxtxvtxutxv xt

L
+∫

0=),(),(),(
00

dxtxvtxudxtxv
dt
d

x

LL

∫∫ +

(18)0=),(),(),(
00

dxtxvtxudxtxv
dt
d

x

LL

∫∫ −

Applying (12), (18) leads to:

{ } 0=),(),(),(),( 2

00
dxtxutxutxudxtxv

dt
d

xxx

LL
−− ∫∫

{ } { } 0=)),((
2

)),((
2
1),( 22

00
dxtxutxudxtxv

dt
d

xxx

LL 2
−− ∫∫

Applying periodic boundary conditions, the second integral 
vanishes and we have:

(19)0=),(
0

dxtxv
dt
d L

∫

and integrating with respect to time, the result follows:

)(=),(
00

dxxdxtxv
LL

∫∫

The α-Regularization Model With 3
1=

For 3
1= , the system (11)–(12) becomes:

(20)0=),(),(
3
2),(),(

3
1),( txutxvtxvtxutxv xxt ++

),(),(=),( 2 txutxutxv xx−

Theorem 2 ( 3
1= ). Let )(x  be smooth enough, and let ),( txu , 

),( txv  be the corresponding L-periodic solutions of  (20), then:

(21)dxxxdxtxutxu x

L

x

L 222

0

222

0
))(())((=)),(()),(( ++ ∫∫

That is, a modified energy is conserved.

Proof. Multiply (20) by u  and integrate:

),()),((3
1),(),( 2

00
dxtxvtxudxtxvtxu x

L

t

L

∫∫ ++0 =

0
u

L

∫0 = ),(),(),(3
2

0
dxtxutxutxv x

L

∫+

),()),((3
1),(),( 2

00
txvtxudxtxvtxu x

L

t

L
++ ∫∫=0

0
u

L

∫0 = ))),()((,( 2 dxtxutxv x+

)),()),(((
3
1),(),( 2

00
dxtxvtxudxtxvtxu x

L

t

L

∫∫ +=0

Applying boundary conditions, the last term is zero and we 
obtain:

(22)0=),(),(
0

dxtxvtxu t

L

∫
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Plug (12) into (22) and we have:

{ }),(),(),(=),(),( 2

00
dxtxutxutxudxtxvtxu xxtt

L

t

L
−∫∫

0=)),(()),((2
1 222

0
dxtxutxudt

d
x

L
+∫=

that is:

dxxxdxtxutxu x

L

x

L 222

0

222

0
))(())((=)),(()),(( ++ ∫∫

The α-Regularization Model With 3
2=

For 3
2= , the system (11)–(12) becomes:

(23)0=),(),(3
1),(),(3

2),( txutxvtxvtxutxv xxt ++

),(),(=),( 2 txutxutxv xx−

Theorem 3 ( 3
2= ). Let )(x  be smooth enough, and let ),( txu , 

),( txv  be the corresponding L-periodic solutions of  (23), then:

(24))(=),( 2

0

2

0
dxxdxtxv

LL

∫∫

That is, the energy is conserved.

Proof. Multiply (23) by ),( txv  and integrate:

),(),(),(3
2),(),(

00
dxtxvtxutxvdxtxvtxv x

L

t

L

∫∫ ++0 =

v
0

L

∫0 = ),()),((3
1 2

0
dxtxutxv x

L

∫+

{ })),()(,(
3
1)),((

2
1 2

0

2

0
dxtxvtxudxtxv x

LL

∫∫ +{ }t=0

Applying boundary conditions, the last term is zero and we 
obtain:

(25)0=),(
2
1 2

0
dxtxv

dt
d L

∫

Finally applying initial condition (25) becomes:

dxxdxtxv
LL 2

0

2

0
)(=),( ∫∫

Numerical  Implementat ion

Consider the problem (11)–(13) with L-peri-
odic initial conditions )(=)(=,0)( Lxvxvxv oo + . 
Create a fine mesh on the interval [0,1] such that 

1==)(=<...<)2(=<)(=<=0 210 LNhxhxhxx N , where N 
and h are the number and size of  the mesh in space respec-
tively. Two initial profiles are considered to test the behavior 
of  numerical solution:

(26)=)(xv0 )(21 xcos−x)( =

and
(27)=)(xv0 )(2 xcosx)( =

In the former, the solution remains nonnegative and the 
shock moves; while in the latter, the solution has both 
positive and negative parts and the shock is stationary. The 
solution is computed up to a time ft . Time is discretized as 

fttKttttt =<...<)2(=<)(=<=0 210 ΔΔΔ , where K and Δt 
are the number and size of  the time steps respectively. In 
particular bbf ttt 2

3,=  and bt2  are considered, where bt  is the 
time at which the discontinuity of  the solution of  Burgers 
equation (2) forms and is given by equation (8). With this 
discretization define ),(= nj

n
j txuu  and ),(= nj

n
j txvv .

Equations (11) and (12) are solved simultaneously as a 
coupled system. Starting with initial conditions )(=)( xxvo , 
evaluated at the mesh points, the values of  ,0)(=0

jj xuu , 
Nj 0,...,=  are obtained from (12) by means of  the Finite 

Fourier Transform. Then at the first time step, ),(=1 txvv jj Δ  
is computed from equation (11) using the Forward Time 
Centered Space (FTCS) spatial discretization scheme. 
However this method is actually unstable for use at long 
times and so the further time steps are computed using sec-
ond order multistep Leap Frog scheme (Strikwerda, 2004). 
The solution is computed by going back and forth between 
equations (11) and (12) at each time step.

Solution to ),(=),(),( 2 txvtxutxu xx−  at each time step. Several 
methods could be used to compute ),( ntxu  given ),( ntxv  
for each fixed nt  from (12) such as the Thomas algo-
rithm (Strikwerda 88) applied to finite difference methods 
(Thomas, 1995), and the spectral method based on the 
Finite/Fast Fourier Transform (Strikwerda 46). Here we 
use a spectral method where the Complex Split Radix Fast 
Fourier Transform (FFT) subroutine (Kifowit, 2005) was 
used to implement the Finite Fourier Transform. This 
approach gives a smaller maximum 1L  error compared to 
the Finite Difference algorithm using the Thomas solution 
method. The forward Finite Fourier Transform is defined 
as:

(28)û = 2
1

0=

hijk
j

N

j
k eu −

−

∑

and the backward Finite Fourier Transform is given by:

(29)û= 2
1

0=

hijk
k

N

k
j ehu ∑

−
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Given ),( ntxv  at the mesh points for a fixed time, the for-
ward transform gives an array 10,...,=, −Nkv̂k . Using the 
derivative formula for the Finite Fourier transform and 
shifting indices, equation (12) becomes:

ˆ)/2)(4(ˆ=ˆ /2)(22/2)(2/2)(2 hNkij
k

N–1

k=0

hNkij
k

N–1

k=0

hNkij
k

N–1

k=0
euNkeuev −−− −+∑∑∑

Matching coefficients, this gives kû  in terms of  known quan-
tities (Thomas 101):

(30)û 10,...,=,= −Nkv̂k
k /2)(41 222 −+ Nk

Then using backward transform (29), ),( ntxu  is obtained for 
that time step nt .

Difficulties with this method might arise due to the occur-
rence of  aliasing instabilities over long times for large N 
(Boyd, 2001). In this case some smoothing of  the high 
modes of  the Fourier spectrum is required. Aliasing insta-
bility here is controlled by using 25th order Fourier filtering 
to damp the highest modes (Hou et al., 1994):

(31)[ ] ˆ=ˆ
25)/10(

k
Nk

k vev −Π

The overall accuracy of  the method is determined by the 
filter and is of  order )25O((1/N)  (Hou et al.,1994). To reduce 
the noise introduced by taking derivatives, Krasny filter-
ing was also used, where the Fourier modes of  magnitude 
less than the tolerance level 1210= −E  were set to zero 
(Krasny, 1986). The combination of  both methods, when 
applied to kv̂  before evaluating kû  from (30), significantly 
improves the accuracy of  the method.

First Time Step FTCS (Forward Time Centered Space) Scheme. 
In this scheme forward and center difference formulas are 
used to discretize time and space derivatives respectively 
(Strikwerda 17):

(32))(= t
vv

tOt
vv

vdt
d n

jj
n
jjn

j Δ
−

≈Δ+
Δ
− 1n+1n+

(33)
2h

)(
2h

= 2 uu
hO

uu
u

dx
d n

j–1
n
j+1

n
j–1

n
j+1n

j
−

≈+
−

Using (32) and (33), equation (11) becomes:

)()(=)
2

()(1)
2

( 2
00

0
00

0
01

hOtO
h
uu

v
h
vv

u
t
vv j–1j+1

j
j–1j+1

j
jj +Δ

−
−+

−
+

Δ

−

which solving for 1
jv , and dropping the error terms, gives:

(34)))()(1)((
2

= 00000001 −−+−
Δ

− j–1j+1jj–1j+1jjj uuvvvu
h
tvv

Knowing 0
jv  and 0

ju , equation (34) gives 1
jv  for the next time 

iteration Nj 0,1,...,=∀ . This scheme is used on the first time 
step only to provide enough information for employing the 
multistep Leap Frog scheme for the remaining time steps.

Time Steps for n > 1 Leap Frog CTCS (Centered Time Centered 
Space) Scheme. In this scheme center difference formulas 
are used to discretize both time and space derivatives 
(Strikwerda 17), i.e.:

(35)
2

)(
2

= 2

t
vv

tO
t
vv

v
dt
d n–1

j
n+1
j

n–1
j

n+1
jn

j Δ
−

≈Δ+
Δ
−

Using (35) and (33), equation (11) becomes:

)()(=)
2

()(1)
2

(
2

22 hOtO
h
uu

v
h
vv

u
t
vv n

j–1
n
j+1n

j

n
j–1

n
j+1n

j

n–1
j

n+1
j +Δ

−
−+

−
+

Δ

−

which solving for n+1
jv , and dropping the error terms as 

before, gives:

(36)))()(1)((= n
j–1

n
j+1

n
j

n
j–1

n
j+1

n
j

n–1
j

n+1
j uuvvvu

h
tvv −−+−

Δ
−

Therefore, knowing n
jv , n

ju  and n–1
jv , equation (36) gives n+1

jv  
for the next time iteration Nj 0,1,...,=∀ .

Stability and Convergence. For an explicit numerical scheme 
one of  the necessary stability conditions is Courant-
Friedrichs-Lewy condition (Strikwerda 34) stating that the 
ratio 1<h

||max tun Δ . Physically this means that the solution 
(e.g. shock wave) can not propagate more than one grid 
spacing in a single time step. Here, since 1||max ≈nu  by 
choice of  initial conditions, the following stability relation 
was used:

(37)2
= htΔ

Since the parameter α  is a key convergence parameter, we 
use the following criteria to determine physically reasonable 
choices of  α . For example, when θ = 1, the maximum of  

),( txv  is conserved in time and thus cannot exceed the 
maximum in the initial data. However, for a fixed number 
of  partition intervals N considered, there is a particular 
value of  α  below which )(xv  becomes oscillatory, hence 
violating maximum conservation condition. One of  the 
tasks of  this numerical investigation was to establish a rela-
tion between α  and the mesh size that preserves stability 
and consistency with Theorems 1–3. For the case θ = 1, 
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holding N fixed, α  is decreased incrementally while the 
maximum of  the numerical approximation of  ),( txv  lies 
within a specified tolerance level δ of  the maximum of  the 
initial data. That is, α  can only be decreased as long as the 
following condition holds:

(38))(),( 1,...,=1,...,= ≤− jNjnjNj xmaxtxvmax

for all discrete times fn tt ≤  .

For the remaining cases 3
1=  and 3

2=  the maximum of  
),( txv  need not be conserved and the stopping criteria for 

decreasing α  relies on the results of  Theorems 2 and 3. The 
conserved quantities (21) and (24) are computed numeri-
cally for 3

1=  and 3
2=  respectively. Using the derivative 

approximation (33) they become:

(39)const
h
uu

uh
n
j–1

n
j+1n

j

N

j=1
=)

2
()( 222

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+∑

and

(40)=
2

constvh n
j

N

j=1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

Holding N fixed, α  is decreased incrementally while the 
numerical approximation of  the conserved quantity (39) or 
(40) (depending on θ) lies within a specified tolerance level 
δ of  the initial value for all fn tt ≤ . That is, α  can only be 
decreased as long as the numerical equivalents of  Theorems 
2 and 3 are satisfied.

Exact Solution
The numerically computed solution is compared to the 
exact entropy solution obtained by the method of  charac-
teristics for the two different initial data (26) and (27).

The discontinuity is calculated from (8) to occur at 
2
1=bt  

for both cases. For btt <  and [ ]0,1∈x  the continuous solu-
tion is found in the same way for both (26) and (27) using 
equations (4) and (5) and applying Newton’s iteration 
method. The initial guess is randomly chosen in the interval 
[0,1] and the iteration is repeated until ox  converges to an 
element of  [0,1]. However after the break time a different 
approach must be used because the characteristics intersect 
(shock formation).

In the case of  the initial data given in equation (26) the 
shock forms at )

2
1,4

32(=),( +
bb tx  and the characteristic 

that initiates the shock originates from 4
3=b

ox . Suppose 
at the break time the speed of  the shock, given by (7), is 

1=))()((2
1)( b

o
b
obs xxt +≈x . At the later times the position 

of  the shock is computed as:

(41)kbbs xxxtktx )(...)(=)( 1 Δ++Δ+Δ+

where

(42)1))(()( tkttx bsk Δ−Δ+≈Δ x

where the error is )( 2tO Δ , and from Rankine-Hugoniot 
condition (7):

(43)1)))((1))(((
2
1=1))(( −Δ++−Δ+−Δ+ −+ kttukttuktt bbbsx

Knowing the position of  the shock at each time step 
allows for the successful choice of  the initial guess in the 
Newton iteration algorithm when solving equation (4) for 

ox . Characteristics starting to the right of  b
ox  carry the val-

ues of  ),( tktxu b Δ+  only for x to the right of  )( tktx bs Δ+  
and the characteristics to the left of  b

ox  carry the values of  
),( tktxu b Δ+  for x to the left of  )( tktx bs Δ+ .

In the case of  the initial data in equation (27) the shock 
is stationary and is located at 4

1=x  ; hence we do not need 
to use (7) to determine the change in the shock position 
in time. However, more intervals need to be considered 
(i.e., [-1/4, 1/4], [1/4, 3/4], [3/4, 5/4]) for the initial guess 
generation for the Newton iteration of  equation (4) given 

[ ] [ ]fttx 0,0,1),( ×∈  .

Once the exact entropy solution is obtained, the 1L  error is 
calculated at each fixed time as:

(44)[ ] ),(=)( jnj

N

j=1
n utxuhutE −∑ n

where jiu ,  is the exact entropy solution computed as 
described above. The global error is computed as a maxi-
mum 1L  error over all times up to ft :

(45)[ ] )(= nn=1,…, Kf tEmaxtE

Results  and Discussion

The Case of θ = 1
For the initial data (26) the solution is nonnegative and the 
nonzero parts of  the solution move to the right in time at 
different speeds; however, for the initial data (27) the posi-
tion of  the shock is fixed at 4

1=x . Figures 1 and 2 show 
the exact and numerical solution curves superimposed for 
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),( txv  and ),( txu  for both initial conditions. Observe that 
up to time btt 3/2= , v  is an excellent approximation of  the 
exact solution. The function u  also approximates the exact 
solution but is smoothed over a larger region and deviates 
more near the discontinuity. At larger times, for example 

btt 2= , it is apparent that v  does not decay while both the 
exact solution and u  do decay. This will be important later 
when we check the Oleinik entropy inequality.

The tolerance level 510= −E  is used with equation (38) 
to generate a relationship between α  and hN 1=  computed 
up to twice the break time. This relationship is shown on 
Figure 3 in log-log scale for both initial conditions (26) and 
(27). The physically meaningful α  lie above the curves. For 
combinations of  α  and h

1 below the curves, oscillations will 
develop in the numerical solution and the maximum of  v  
will no longer be conserved.

The local 1L  error (44) as well as the global 1L  error (45) 
were computed. Figure 4 shows the evolution of  1L  error in 
time for N=8192 for the case of  the initial data in (27). The 
vertical lines mark the times bt  , bt2

3  and bt2  . Observe that 
the maximum error occurs just after the break time. Note 
that the error for v  is significantly less than the error for 
u . However, around time btt 2=  , the error in v  begins to 
increase in time due to the fact that v  does not decay, which 
violates the entropy condition (10).

In Figures 5A and 5B the global error up to btt 2
3=  and btt 2=  , 

as well as the local error at btt =  , is shown as a function of  
α  for both initial conditions (26) and (27). In all cases the 
rate of  convergence in α  is approximately 1 or better for 
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Figure 2
Solution curves computed up to btt 2=  for the initial data (27). Red 
solid curves represent the exact solution for bbb tttt (3/2),,(1/2)=  
and bt2 . Blue dotted curves represent the corresponding numerical 
solution: [A]-t, [B]- )(xu  with N=16384 and α=0.0216.
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Figure 1
Solution curves computed up to btt 2=  for the initial data (26). Red 
solid curves represent the exact solution for bbb tttt (3/2),,(1/2)=  
and bt2 . Blue dotted curves represent the corresponding numerical 
solution: [A]- )(xv , [B]- )(xu  with N=16384 and α=0.0327.
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the error in u  and v . The reference lines indicating con-
vergence rates (i.e. ~E ) for p = 1 (dashed) and p = 1/2 
(dash-dot) are also shown in Figures 5A and 5B.

Equation (10) is used to check if  the numerical solution sat-
isfies the entropy condition. The equivalent representation 
of  Oleinik inequality that is easier to check numerically is:

(46)10,...,=,<),(),(
max −

− Ni
t
C

h
txvtxv ii+1

ix

Figures 6 and 7 show that the positive slopes are bounded 
for both types of  initial conditions (26) and (27) for 

),( txu . Therefore it appears that the numerical solution 
),( txu  does satisfy the entropy condition, thus suggesting 

convergence to the unique physical solution. Interestingly, 
from Figures 6 and 7 it appears that v  does not satisfy the 
Oleinik inequality. Note that as the mesh is refined, the 
rapid growth in xv  occurs earlier in time suggesting that v  
violates Oleinik inequality in the limit h → 0. The general 
question of  convergence of  discrete solutions to the con-
tinuous entropy solution strongly depends on the choice of  
numerical scheme. We conjecture that the only appropriate 
numerical schemes for which v  converges to the entropy 
solution are of  upwind-type, which will yield convergence 
to the entropy solution as h → 0 even if  α = 0.
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As an additional check of  accuracy, (17) was computed 
numerically at each time step. The difference between (17) 
at time zero and (17) at any other time step did not exceed 

8−1E , hence implying that the numerical scheme also con-
serves this quantity.

The Case of 3
2=

We next consider the case in which 3
2= . Here, the stopping 

criterion:

(47)≤− ∑∑ 22 ,0))(()),(( i

N–1

i=0
ji

N–1

i=0
xvhtxvh
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is used to determine the range of  physically relevant α . 
Figures 8 and 9 show the numerical solution curves for 
u  and v  computed using 3

2=  and α  as labeled. Observe 
that v  has large overshoots near the discontinuity and the 
function u  provides a better approximation of  the exact 
physically meaningful solution.

The numerical investigation shows that for a given N, the 
parameter α cannot be decreased indefinitely without violat-
ing Theorem 3. The relationship between α and N is estab-

lished as described previously using (47) with the tolerance 
level 710= −E . The plot of  this relationship is presented 
in Figure 10. Analogously to the case of  θ = 1, the physically 
meaningful α lie above the curves. For the combinations of  
α and N below the curves, the energy (40) is not conserved 
in time to the tolerance level specified above, thus violating 
Theorem 3 and therefore not providing a valid solution to 
the modeled problem.

Figures 11A and 11B show the relationships between the 
global error up to btt 2

3=  as well as the local error at bt  as 
a function of  α  for both initial conditions (26) and (27) 
respectively. Both initial conditions demonstrate the same 
convergence behavior in α. For small α (large N) the order 
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of  convergence in α  is about 1.2 for local error at btt =  
for both v  and u . The same is true for global error for u . 
However, the global error for v  does not seem to settle to 
a linear profile in log-log scale for small α  and instead the 
order of  convergence decreases, implying that v  does not 
converge to the exact solution as fast as u  or perhaps does 
not converge at all.

To check if  the numerically computed solutions satisfy the 
entropy condition, the Oleinik inequality is plotted in Figure 
12 for both initial conditions. As in the θ = 1 case, the 
positive slopes of  u  for 3

2=  seem to be bounded for both 
initial conditions, thus implying that the solution appears to 
satisfy the entropy condition and is physically meaningful. 
However for v  the positive slopes become unbounded for 
larger t causing v  to violate the entropy condition. Further, 
as in the θ = 1  case, the rapid growth of  xv  occurs at earlier 
times when the mesh is refined.

Both error and entropy investigation imply that it is u  that 
appears to converge to the unique entropy solution and 
not v . As is clearly visible from the plots of  the numeri-
cal solution for both initial data the oscillations and sharp 
positive gradients appear around the shock in the case of  v . 
This causes the error to grow and results in the violation 
of  the entropy condition for v . The function u  on the 
other hand is monotone around the region of  discontinuity 
in exact solution and appears to converge steadily without 
violating the entropy condition.

The Case of 3
1=

Figures 13 and 14 show the numerical approximations u  
and v  computed using 3

1= . It is clear that the solution is 
well approximated only for regions that are far away from 
the position of  the discontinuity in the exact solution. 
Oscillations and overshoots develop in both v  and u  in this 
case, and the growth of  positive slopes is visible even from 
the solution curves for as early as btt= .

The tolerance level 710= −E  is used with equation (39) 
to generate a relationship between α  and hN 1=  computed 
up to btt 2

3= . This relationship is shown in Figure 15 in 
log-log scale for both initial conditions (26) and (27). As 
in the previous cases, the physically meaningful α lie above 
the curves. For the combinations of  α and N below the 
curves, the modified energy (39) is not conserved in time to 
the tolerance level specified above, thus violating Theorem 
2 and therefore not providing an accurate solution to the 
modeled problem.
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1= ) Solution curves computed up to btt 2
3=  for the initial 

data (27). Red solid curves represent the exact solution for 
bbb tttt (3/2),,(1/2)= . Blue dotted curves represent the correspond-

ing numerical solution: [A]- )(xv , [B]- )(xu  with N=16384 and 
α=0.0226.
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1= ) Solution curves computed up to btt 2
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data (26). Red solid curves represent the exact solution for 
bbb tttt (3/2),,(1/2)= . Blue dotted curves represent the correspond-

ing numerical solution: [A]- )(xv , [B]- )(xu  with N=16384 and 
α=0.0175.
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Figures 16A and 16B show the relationships between the 
global and local errors up to btt 2

3=  as a function of  α for 
both initial conditions (26) and (27) respectively. The order 
of  convergence in α for large N of  the local 1L  error at 
break time is about 1.2 for u  and 1 for v  for initial condi-
tions (26). For the other initial condition (27) the order is 
about 1.3 for u  and 1.2 for v . However, the global error, 
does not appear to settle to a linear log-log profile con-
sistently for both initial data for both u  and v . Thus at 
the later times after the shock forms in the exact solution, 

neither v  nor u  converges at a constant rate to the exact 
solution. In fact, the convergence rate in α decreases and 
the solution apparently diverges.

To check if  the numerically computed solutions satisfy 
the entropy condition, the Oleinik inequality is plotted in 
Figure 17 for both initial data. Unlike the previous cases 
of  θ = 1 and 3

2=  , the positive slopes of  u  for 3
1=  also 

become unbounded, for at least one of  the initial conditions 
(26). This implies that neither u  nor v  satisfy the entropy 
condition and both numerical solutions are not physically 
meaningful in the limit h → 0.
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Conclusion

We have solved Burgers equation using the Leray-α regu-
larization numerically using a hybrid algorithm combining 
a finite difference scheme for the conservation law and 
the spectral method for the regularization. We examined 
the results for two types of  periodic initial data. For both 
types of  initial data considered, shocks form. In one case 
the shock moves, while the shock is stationary in the other. 
For both initial data and for θ = 1 and 3

2 , we find numerical 
convergence of  the regularized solution u  to the unique 
entropy solution of  the Burgers equation. However, v  
was apparently in violation of  the entropy condition in all 
the cases considered. Hence, v  seemingly does not repre-
sent a physically meaningful solution to Burgers equation 
in the limit h → 0. For 3

1=  it appears that for the given 
numerical scheme used, neither u  nor v  converge to the 
unique entropy solution. Further study of  this regulariza-
tion scheme could be done employing different numerical 
approaches to determine whether there are schemes for 
which v  converges to the entropy solution. We suggest that 
such schemes are of  upwind type and would thus give con-
vergence to the entropy solution even if  α = 0. Centered 
difference schemes of  the type used here likely do not 
enable v  to converge to the entropy solution.
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